Termination w.r.t. Q of the following Term Rewriting System could be proven:

Q restricted rewrite system:
The TRS R consists of the following rules:

a__pairNscons(0, incr(oddNs))
a__oddNsa__incr(a__pairNs)
a__incr(cons(X, XS)) → cons(s(mark(X)), incr(XS))
a__take(0, XS) → nil
a__take(s(N), cons(X, XS)) → cons(mark(X), take(N, XS))
a__zip(nil, XS) → nil
a__zip(X, nil) → nil
a__zip(cons(X, XS), cons(Y, YS)) → cons(pair(mark(X), mark(Y)), zip(XS, YS))
a__tail(cons(X, XS)) → mark(XS)
a__repItems(nil) → nil
a__repItems(cons(X, XS)) → cons(mark(X), cons(X, repItems(XS)))
mark(pairNs) → a__pairNs
mark(incr(X)) → a__incr(mark(X))
mark(oddNs) → a__oddNs
mark(take(X1, X2)) → a__take(mark(X1), mark(X2))
mark(zip(X1, X2)) → a__zip(mark(X1), mark(X2))
mark(tail(X)) → a__tail(mark(X))
mark(repItems(X)) → a__repItems(mark(X))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(0) → 0
mark(s(X)) → s(mark(X))
mark(nil) → nil
mark(pair(X1, X2)) → pair(mark(X1), mark(X2))
a__pairNspairNs
a__incr(X) → incr(X)
a__oddNsoddNs
a__take(X1, X2) → take(X1, X2)
a__zip(X1, X2) → zip(X1, X2)
a__tail(X) → tail(X)
a__repItems(X) → repItems(X)

Q is empty.


QTRS
  ↳ DependencyPairsProof

Q restricted rewrite system:
The TRS R consists of the following rules:

a__pairNscons(0, incr(oddNs))
a__oddNsa__incr(a__pairNs)
a__incr(cons(X, XS)) → cons(s(mark(X)), incr(XS))
a__take(0, XS) → nil
a__take(s(N), cons(X, XS)) → cons(mark(X), take(N, XS))
a__zip(nil, XS) → nil
a__zip(X, nil) → nil
a__zip(cons(X, XS), cons(Y, YS)) → cons(pair(mark(X), mark(Y)), zip(XS, YS))
a__tail(cons(X, XS)) → mark(XS)
a__repItems(nil) → nil
a__repItems(cons(X, XS)) → cons(mark(X), cons(X, repItems(XS)))
mark(pairNs) → a__pairNs
mark(incr(X)) → a__incr(mark(X))
mark(oddNs) → a__oddNs
mark(take(X1, X2)) → a__take(mark(X1), mark(X2))
mark(zip(X1, X2)) → a__zip(mark(X1), mark(X2))
mark(tail(X)) → a__tail(mark(X))
mark(repItems(X)) → a__repItems(mark(X))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(0) → 0
mark(s(X)) → s(mark(X))
mark(nil) → nil
mark(pair(X1, X2)) → pair(mark(X1), mark(X2))
a__pairNspairNs
a__incr(X) → incr(X)
a__oddNsoddNs
a__take(X1, X2) → take(X1, X2)
a__zip(X1, X2) → zip(X1, X2)
a__tail(X) → tail(X)
a__repItems(X) → repItems(X)

Q is empty.

Using Dependency Pairs [1,15] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:

MARK(take(X1, X2)) → MARK(X2)
MARK(tail(X)) → A__TAIL(mark(X))
MARK(repItems(X)) → MARK(X)
MARK(s(X)) → MARK(X)
MARK(tail(X)) → MARK(X)
MARK(repItems(X)) → A__REPITEMS(mark(X))
MARK(incr(X)) → MARK(X)
MARK(cons(X1, X2)) → MARK(X1)
MARK(pairNs) → A__PAIRNS
MARK(pair(X1, X2)) → MARK(X2)
MARK(take(X1, X2)) → MARK(X1)
MARK(zip(X1, X2)) → A__ZIP(mark(X1), mark(X2))
MARK(zip(X1, X2)) → MARK(X2)
MARK(oddNs) → A__ODDNS
MARK(incr(X)) → A__INCR(mark(X))
MARK(take(X1, X2)) → A__TAKE(mark(X1), mark(X2))
A__REPITEMS(cons(X, XS)) → MARK(X)
MARK(pair(X1, X2)) → MARK(X1)
A__ODDNSA__PAIRNS
A__ZIP(cons(X, XS), cons(Y, YS)) → MARK(X)
A__TAIL(cons(X, XS)) → MARK(XS)
MARK(zip(X1, X2)) → MARK(X1)
A__ODDNSA__INCR(a__pairNs)
A__ZIP(cons(X, XS), cons(Y, YS)) → MARK(Y)
A__TAKE(s(N), cons(X, XS)) → MARK(X)
A__INCR(cons(X, XS)) → MARK(X)

The TRS R consists of the following rules:

a__pairNscons(0, incr(oddNs))
a__oddNsa__incr(a__pairNs)
a__incr(cons(X, XS)) → cons(s(mark(X)), incr(XS))
a__take(0, XS) → nil
a__take(s(N), cons(X, XS)) → cons(mark(X), take(N, XS))
a__zip(nil, XS) → nil
a__zip(X, nil) → nil
a__zip(cons(X, XS), cons(Y, YS)) → cons(pair(mark(X), mark(Y)), zip(XS, YS))
a__tail(cons(X, XS)) → mark(XS)
a__repItems(nil) → nil
a__repItems(cons(X, XS)) → cons(mark(X), cons(X, repItems(XS)))
mark(pairNs) → a__pairNs
mark(incr(X)) → a__incr(mark(X))
mark(oddNs) → a__oddNs
mark(take(X1, X2)) → a__take(mark(X1), mark(X2))
mark(zip(X1, X2)) → a__zip(mark(X1), mark(X2))
mark(tail(X)) → a__tail(mark(X))
mark(repItems(X)) → a__repItems(mark(X))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(0) → 0
mark(s(X)) → s(mark(X))
mark(nil) → nil
mark(pair(X1, X2)) → pair(mark(X1), mark(X2))
a__pairNspairNs
a__incr(X) → incr(X)
a__oddNsoddNs
a__take(X1, X2) → take(X1, X2)
a__zip(X1, X2) → zip(X1, X2)
a__tail(X) → tail(X)
a__repItems(X) → repItems(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

↳ QTRS
  ↳ DependencyPairsProof
QDP
      ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

MARK(take(X1, X2)) → MARK(X2)
MARK(tail(X)) → A__TAIL(mark(X))
MARK(repItems(X)) → MARK(X)
MARK(s(X)) → MARK(X)
MARK(tail(X)) → MARK(X)
MARK(repItems(X)) → A__REPITEMS(mark(X))
MARK(incr(X)) → MARK(X)
MARK(cons(X1, X2)) → MARK(X1)
MARK(pairNs) → A__PAIRNS
MARK(pair(X1, X2)) → MARK(X2)
MARK(take(X1, X2)) → MARK(X1)
MARK(zip(X1, X2)) → A__ZIP(mark(X1), mark(X2))
MARK(zip(X1, X2)) → MARK(X2)
MARK(oddNs) → A__ODDNS
MARK(incr(X)) → A__INCR(mark(X))
MARK(take(X1, X2)) → A__TAKE(mark(X1), mark(X2))
A__REPITEMS(cons(X, XS)) → MARK(X)
MARK(pair(X1, X2)) → MARK(X1)
A__ODDNSA__PAIRNS
A__ZIP(cons(X, XS), cons(Y, YS)) → MARK(X)
A__TAIL(cons(X, XS)) → MARK(XS)
MARK(zip(X1, X2)) → MARK(X1)
A__ODDNSA__INCR(a__pairNs)
A__ZIP(cons(X, XS), cons(Y, YS)) → MARK(Y)
A__TAKE(s(N), cons(X, XS)) → MARK(X)
A__INCR(cons(X, XS)) → MARK(X)

The TRS R consists of the following rules:

a__pairNscons(0, incr(oddNs))
a__oddNsa__incr(a__pairNs)
a__incr(cons(X, XS)) → cons(s(mark(X)), incr(XS))
a__take(0, XS) → nil
a__take(s(N), cons(X, XS)) → cons(mark(X), take(N, XS))
a__zip(nil, XS) → nil
a__zip(X, nil) → nil
a__zip(cons(X, XS), cons(Y, YS)) → cons(pair(mark(X), mark(Y)), zip(XS, YS))
a__tail(cons(X, XS)) → mark(XS)
a__repItems(nil) → nil
a__repItems(cons(X, XS)) → cons(mark(X), cons(X, repItems(XS)))
mark(pairNs) → a__pairNs
mark(incr(X)) → a__incr(mark(X))
mark(oddNs) → a__oddNs
mark(take(X1, X2)) → a__take(mark(X1), mark(X2))
mark(zip(X1, X2)) → a__zip(mark(X1), mark(X2))
mark(tail(X)) → a__tail(mark(X))
mark(repItems(X)) → a__repItems(mark(X))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(0) → 0
mark(s(X)) → s(mark(X))
mark(nil) → nil
mark(pair(X1, X2)) → pair(mark(X1), mark(X2))
a__pairNspairNs
a__incr(X) → incr(X)
a__oddNsoddNs
a__take(X1, X2) → take(X1, X2)
a__zip(X1, X2) → zip(X1, X2)
a__tail(X) → tail(X)
a__repItems(X) → repItems(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 2 less nodes.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
QDP
          ↳ QDPOrderProof

Q DP problem:
The TRS P consists of the following rules:

MARK(take(X1, X2)) → MARK(X2)
MARK(tail(X)) → A__TAIL(mark(X))
MARK(incr(X)) → A__INCR(mark(X))
MARK(take(X1, X2)) → A__TAKE(mark(X1), mark(X2))
MARK(repItems(X)) → MARK(X)
MARK(s(X)) → MARK(X)
A__REPITEMS(cons(X, XS)) → MARK(X)
MARK(repItems(X)) → A__REPITEMS(mark(X))
MARK(tail(X)) → MARK(X)
MARK(incr(X)) → MARK(X)
MARK(cons(X1, X2)) → MARK(X1)
MARK(pair(X1, X2)) → MARK(X1)
A__ZIP(cons(X, XS), cons(Y, YS)) → MARK(X)
A__TAIL(cons(X, XS)) → MARK(XS)
MARK(pair(X1, X2)) → MARK(X2)
MARK(zip(X1, X2)) → MARK(X1)
A__ODDNSA__INCR(a__pairNs)
A__ZIP(cons(X, XS), cons(Y, YS)) → MARK(Y)
MARK(take(X1, X2)) → MARK(X1)
MARK(zip(X1, X2)) → A__ZIP(mark(X1), mark(X2))
MARK(zip(X1, X2)) → MARK(X2)
A__TAKE(s(N), cons(X, XS)) → MARK(X)
MARK(oddNs) → A__ODDNS
A__INCR(cons(X, XS)) → MARK(X)

The TRS R consists of the following rules:

a__pairNscons(0, incr(oddNs))
a__oddNsa__incr(a__pairNs)
a__incr(cons(X, XS)) → cons(s(mark(X)), incr(XS))
a__take(0, XS) → nil
a__take(s(N), cons(X, XS)) → cons(mark(X), take(N, XS))
a__zip(nil, XS) → nil
a__zip(X, nil) → nil
a__zip(cons(X, XS), cons(Y, YS)) → cons(pair(mark(X), mark(Y)), zip(XS, YS))
a__tail(cons(X, XS)) → mark(XS)
a__repItems(nil) → nil
a__repItems(cons(X, XS)) → cons(mark(X), cons(X, repItems(XS)))
mark(pairNs) → a__pairNs
mark(incr(X)) → a__incr(mark(X))
mark(oddNs) → a__oddNs
mark(take(X1, X2)) → a__take(mark(X1), mark(X2))
mark(zip(X1, X2)) → a__zip(mark(X1), mark(X2))
mark(tail(X)) → a__tail(mark(X))
mark(repItems(X)) → a__repItems(mark(X))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(0) → 0
mark(s(X)) → s(mark(X))
mark(nil) → nil
mark(pair(X1, X2)) → pair(mark(X1), mark(X2))
a__pairNspairNs
a__incr(X) → incr(X)
a__oddNsoddNs
a__take(X1, X2) → take(X1, X2)
a__zip(X1, X2) → zip(X1, X2)
a__tail(X) → tail(X)
a__repItems(X) → repItems(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


MARK(repItems(X)) → MARK(X)
MARK(repItems(X)) → A__REPITEMS(mark(X))
The remaining pairs can at least be oriented weakly.

MARK(take(X1, X2)) → MARK(X2)
MARK(tail(X)) → A__TAIL(mark(X))
MARK(incr(X)) → A__INCR(mark(X))
MARK(take(X1, X2)) → A__TAKE(mark(X1), mark(X2))
MARK(s(X)) → MARK(X)
A__REPITEMS(cons(X, XS)) → MARK(X)
MARK(tail(X)) → MARK(X)
MARK(incr(X)) → MARK(X)
MARK(cons(X1, X2)) → MARK(X1)
MARK(pair(X1, X2)) → MARK(X1)
A__ZIP(cons(X, XS), cons(Y, YS)) → MARK(X)
A__TAIL(cons(X, XS)) → MARK(XS)
MARK(pair(X1, X2)) → MARK(X2)
MARK(zip(X1, X2)) → MARK(X1)
A__ODDNSA__INCR(a__pairNs)
A__ZIP(cons(X, XS), cons(Y, YS)) → MARK(Y)
MARK(take(X1, X2)) → MARK(X1)
MARK(zip(X1, X2)) → A__ZIP(mark(X1), mark(X2))
MARK(zip(X1, X2)) → MARK(X2)
A__TAKE(s(N), cons(X, XS)) → MARK(X)
MARK(oddNs) → A__ODDNS
A__INCR(cons(X, XS)) → MARK(X)
Used ordering: Polynomial interpretation [25,35]:

POL(zip(x1, x2)) = (2)x_1 + (4)x_2   
POL(A__ODDNS) = 0   
POL(a__oddNs) = 0   
POL(mark(x1)) = (2)x_1   
POL(a__pairNs) = 0   
POL(take(x1, x2)) = x_1 + (4)x_2   
POL(repItems(x1)) = 1/4 + (4)x_1   
POL(a__incr(x1)) = (13/4)x_1   
POL(A__REPITEMS(x1)) = x_1   
POL(a__repItems(x1)) = 1/4 + (4)x_1   
POL(pair(x1, x2)) = x_1 + x_2   
POL(a__zip(x1, x2)) = (2)x_1 + (4)x_2   
POL(s(x1)) = x_1   
POL(pairNs) = 0   
POL(nil) = 0   
POL(A__INCR(x1)) = (3/4)x_1   
POL(tail(x1)) = (4)x_1   
POL(a__tail(x1)) = (4)x_1   
POL(A__TAIL(x1)) = x_1   
POL(oddNs) = 0   
POL(0) = 0   
POL(a__take(x1, x2)) = x_1 + (4)x_2   
POL(A__TAKE(x1, x2)) = (1/2)x_2   
POL(cons(x1, x2)) = x_1 + (1/2)x_2   
POL(A__ZIP(x1, x2)) = (1/2)x_1 + x_2   
POL(MARK(x1)) = (1/2)x_1   
POL(incr(x1)) = (13/4)x_1   
The value of delta used in the strict ordering is 1/8.
The following usable rules [17] were oriented:

a__pairNscons(0, incr(oddNs))
a__incr(cons(X, XS)) → cons(s(mark(X)), incr(XS))
a__oddNsa__incr(a__pairNs)
a__take(s(N), cons(X, XS)) → cons(mark(X), take(N, XS))
a__take(0, XS) → nil
a__zip(cons(X, XS), cons(Y, YS)) → cons(pair(mark(X), mark(Y)), zip(XS, YS))
a__zip(nil, XS) → nil
a__zip(X, nil) → nil
mark(pairNs) → a__pairNs
mark(incr(X)) → a__incr(mark(X))
a__repItems(nil) → nil
a__repItems(cons(X, XS)) → cons(mark(X), cons(X, repItems(XS)))
mark(zip(X1, X2)) → a__zip(mark(X1), mark(X2))
a__tail(cons(X, XS)) → mark(XS)
mark(tail(X)) → a__tail(mark(X))
mark(oddNs) → a__oddNs
mark(take(X1, X2)) → a__take(mark(X1), mark(X2))
mark(0) → 0
mark(s(X)) → s(mark(X))
mark(repItems(X)) → a__repItems(mark(X))
mark(cons(X1, X2)) → cons(mark(X1), X2)
a__incr(X) → incr(X)
a__pairNspairNs
mark(pair(X1, X2)) → pair(mark(X1), mark(X2))
mark(nil) → nil
a__tail(X) → tail(X)
a__zip(X1, X2) → zip(X1, X2)
a__take(X1, X2) → take(X1, X2)
a__oddNsoddNs
a__repItems(X) → repItems(X)



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ QDP
          ↳ QDPOrderProof
QDP
              ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

MARK(take(X1, X2)) → MARK(X2)
MARK(tail(X)) → A__TAIL(mark(X))
MARK(incr(X)) → A__INCR(mark(X))
MARK(take(X1, X2)) → A__TAKE(mark(X1), mark(X2))
MARK(s(X)) → MARK(X)
A__REPITEMS(cons(X, XS)) → MARK(X)
MARK(tail(X)) → MARK(X)
MARK(incr(X)) → MARK(X)
MARK(cons(X1, X2)) → MARK(X1)
MARK(pair(X1, X2)) → MARK(X1)
A__ZIP(cons(X, XS), cons(Y, YS)) → MARK(X)
A__TAIL(cons(X, XS)) → MARK(XS)
MARK(zip(X1, X2)) → MARK(X1)
MARK(pair(X1, X2)) → MARK(X2)
A__ODDNSA__INCR(a__pairNs)
MARK(take(X1, X2)) → MARK(X1)
A__ZIP(cons(X, XS), cons(Y, YS)) → MARK(Y)
MARK(zip(X1, X2)) → A__ZIP(mark(X1), mark(X2))
MARK(zip(X1, X2)) → MARK(X2)
A__TAKE(s(N), cons(X, XS)) → MARK(X)
MARK(oddNs) → A__ODDNS
A__INCR(cons(X, XS)) → MARK(X)

The TRS R consists of the following rules:

a__pairNscons(0, incr(oddNs))
a__oddNsa__incr(a__pairNs)
a__incr(cons(X, XS)) → cons(s(mark(X)), incr(XS))
a__take(0, XS) → nil
a__take(s(N), cons(X, XS)) → cons(mark(X), take(N, XS))
a__zip(nil, XS) → nil
a__zip(X, nil) → nil
a__zip(cons(X, XS), cons(Y, YS)) → cons(pair(mark(X), mark(Y)), zip(XS, YS))
a__tail(cons(X, XS)) → mark(XS)
a__repItems(nil) → nil
a__repItems(cons(X, XS)) → cons(mark(X), cons(X, repItems(XS)))
mark(pairNs) → a__pairNs
mark(incr(X)) → a__incr(mark(X))
mark(oddNs) → a__oddNs
mark(take(X1, X2)) → a__take(mark(X1), mark(X2))
mark(zip(X1, X2)) → a__zip(mark(X1), mark(X2))
mark(tail(X)) → a__tail(mark(X))
mark(repItems(X)) → a__repItems(mark(X))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(0) → 0
mark(s(X)) → s(mark(X))
mark(nil) → nil
mark(pair(X1, X2)) → pair(mark(X1), mark(X2))
a__pairNspairNs
a__incr(X) → incr(X)
a__oddNsoddNs
a__take(X1, X2) → take(X1, X2)
a__zip(X1, X2) → zip(X1, X2)
a__tail(X) → tail(X)
a__repItems(X) → repItems(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 1 less node.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ QDP
          ↳ QDPOrderProof
            ↳ QDP
              ↳ DependencyGraphProof
QDP
                  ↳ QDPOrderProof

Q DP problem:
The TRS P consists of the following rules:

MARK(take(X1, X2)) → MARK(X2)
MARK(tail(X)) → A__TAIL(mark(X))
MARK(incr(X)) → A__INCR(mark(X))
MARK(take(X1, X2)) → A__TAKE(mark(X1), mark(X2))
MARK(s(X)) → MARK(X)
MARK(tail(X)) → MARK(X)
MARK(incr(X)) → MARK(X)
MARK(cons(X1, X2)) → MARK(X1)
MARK(pair(X1, X2)) → MARK(X1)
A__ZIP(cons(X, XS), cons(Y, YS)) → MARK(X)
A__TAIL(cons(X, XS)) → MARK(XS)
MARK(pair(X1, X2)) → MARK(X2)
MARK(zip(X1, X2)) → MARK(X1)
A__ODDNSA__INCR(a__pairNs)
A__ZIP(cons(X, XS), cons(Y, YS)) → MARK(Y)
MARK(take(X1, X2)) → MARK(X1)
MARK(zip(X1, X2)) → A__ZIP(mark(X1), mark(X2))
MARK(zip(X1, X2)) → MARK(X2)
A__TAKE(s(N), cons(X, XS)) → MARK(X)
MARK(oddNs) → A__ODDNS
A__INCR(cons(X, XS)) → MARK(X)

The TRS R consists of the following rules:

a__pairNscons(0, incr(oddNs))
a__oddNsa__incr(a__pairNs)
a__incr(cons(X, XS)) → cons(s(mark(X)), incr(XS))
a__take(0, XS) → nil
a__take(s(N), cons(X, XS)) → cons(mark(X), take(N, XS))
a__zip(nil, XS) → nil
a__zip(X, nil) → nil
a__zip(cons(X, XS), cons(Y, YS)) → cons(pair(mark(X), mark(Y)), zip(XS, YS))
a__tail(cons(X, XS)) → mark(XS)
a__repItems(nil) → nil
a__repItems(cons(X, XS)) → cons(mark(X), cons(X, repItems(XS)))
mark(pairNs) → a__pairNs
mark(incr(X)) → a__incr(mark(X))
mark(oddNs) → a__oddNs
mark(take(X1, X2)) → a__take(mark(X1), mark(X2))
mark(zip(X1, X2)) → a__zip(mark(X1), mark(X2))
mark(tail(X)) → a__tail(mark(X))
mark(repItems(X)) → a__repItems(mark(X))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(0) → 0
mark(s(X)) → s(mark(X))
mark(nil) → nil
mark(pair(X1, X2)) → pair(mark(X1), mark(X2))
a__pairNspairNs
a__incr(X) → incr(X)
a__oddNsoddNs
a__take(X1, X2) → take(X1, X2)
a__zip(X1, X2) → zip(X1, X2)
a__tail(X) → tail(X)
a__repItems(X) → repItems(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


MARK(tail(X)) → A__TAIL(mark(X))
MARK(tail(X)) → MARK(X)
A__TAIL(cons(X, XS)) → MARK(XS)
The remaining pairs can at least be oriented weakly.

MARK(take(X1, X2)) → MARK(X2)
MARK(incr(X)) → A__INCR(mark(X))
MARK(take(X1, X2)) → A__TAKE(mark(X1), mark(X2))
MARK(s(X)) → MARK(X)
MARK(incr(X)) → MARK(X)
MARK(cons(X1, X2)) → MARK(X1)
MARK(pair(X1, X2)) → MARK(X1)
A__ZIP(cons(X, XS), cons(Y, YS)) → MARK(X)
MARK(pair(X1, X2)) → MARK(X2)
MARK(zip(X1, X2)) → MARK(X1)
A__ODDNSA__INCR(a__pairNs)
A__ZIP(cons(X, XS), cons(Y, YS)) → MARK(Y)
MARK(take(X1, X2)) → MARK(X1)
MARK(zip(X1, X2)) → A__ZIP(mark(X1), mark(X2))
MARK(zip(X1, X2)) → MARK(X2)
A__TAKE(s(N), cons(X, XS)) → MARK(X)
MARK(oddNs) → A__ODDNS
A__INCR(cons(X, XS)) → MARK(X)
Used ordering: Polynomial interpretation [25,35]:

POL(zip(x1, x2)) = x_1 + (2)x_2   
POL(A__ODDNS) = 5/2   
POL(a__oddNs) = 0   
POL(mark(x1)) = x_1   
POL(a__pairNs) = 0   
POL(take(x1, x2)) = x_1 + (4)x_2   
POL(repItems(x1)) = (2)x_1   
POL(a__incr(x1)) = (2)x_1   
POL(a__repItems(x1)) = (2)x_1   
POL(pair(x1, x2)) = x_1 + x_2   
POL(pairNs) = 0   
POL(a__zip(x1, x2)) = x_1 + (2)x_2   
POL(s(x1)) = (3/2)x_1   
POL(nil) = 0   
POL(A__INCR(x1)) = 5/2 + (1/4)x_1   
POL(tail(x1)) = 2 + (2)x_1   
POL(a__tail(x1)) = 2 + (2)x_1   
POL(A__TAIL(x1)) = 4 + x_1   
POL(oddNs) = 0   
POL(0) = 0   
POL(a__take(x1, x2)) = x_1 + (4)x_2   
POL(A__TAKE(x1, x2)) = 5/2 + (1/4)x_2   
POL(A__ZIP(x1, x2)) = 5/2 + (1/4)x_1 + (2)x_2   
POL(cons(x1, x2)) = (4)x_1 + x_2   
POL(MARK(x1)) = 5/2 + x_1   
POL(incr(x1)) = (2)x_1   
The value of delta used in the strict ordering is 1/2.
The following usable rules [17] were oriented:

a__pairNscons(0, incr(oddNs))
a__incr(cons(X, XS)) → cons(s(mark(X)), incr(XS))
a__oddNsa__incr(a__pairNs)
a__take(s(N), cons(X, XS)) → cons(mark(X), take(N, XS))
a__take(0, XS) → nil
a__zip(cons(X, XS), cons(Y, YS)) → cons(pair(mark(X), mark(Y)), zip(XS, YS))
a__zip(nil, XS) → nil
a__zip(X, nil) → nil
mark(pairNs) → a__pairNs
mark(incr(X)) → a__incr(mark(X))
a__repItems(nil) → nil
a__repItems(cons(X, XS)) → cons(mark(X), cons(X, repItems(XS)))
mark(zip(X1, X2)) → a__zip(mark(X1), mark(X2))
a__tail(cons(X, XS)) → mark(XS)
mark(tail(X)) → a__tail(mark(X))
mark(oddNs) → a__oddNs
mark(take(X1, X2)) → a__take(mark(X1), mark(X2))
mark(0) → 0
mark(s(X)) → s(mark(X))
mark(repItems(X)) → a__repItems(mark(X))
mark(cons(X1, X2)) → cons(mark(X1), X2)
a__incr(X) → incr(X)
a__pairNspairNs
mark(pair(X1, X2)) → pair(mark(X1), mark(X2))
mark(nil) → nil
a__tail(X) → tail(X)
a__zip(X1, X2) → zip(X1, X2)
a__take(X1, X2) → take(X1, X2)
a__oddNsoddNs
a__repItems(X) → repItems(X)



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ QDP
          ↳ QDPOrderProof
            ↳ QDP
              ↳ DependencyGraphProof
                ↳ QDP
                  ↳ QDPOrderProof
QDP
                      ↳ QDPOrderProof

Q DP problem:
The TRS P consists of the following rules:

MARK(take(X1, X2)) → MARK(X2)
MARK(incr(X)) → A__INCR(mark(X))
MARK(take(X1, X2)) → A__TAKE(mark(X1), mark(X2))
MARK(s(X)) → MARK(X)
MARK(incr(X)) → MARK(X)
MARK(cons(X1, X2)) → MARK(X1)
MARK(pair(X1, X2)) → MARK(X1)
A__ZIP(cons(X, XS), cons(Y, YS)) → MARK(X)
MARK(pair(X1, X2)) → MARK(X2)
MARK(zip(X1, X2)) → MARK(X1)
A__ODDNSA__INCR(a__pairNs)
A__ZIP(cons(X, XS), cons(Y, YS)) → MARK(Y)
MARK(take(X1, X2)) → MARK(X1)
MARK(zip(X1, X2)) → A__ZIP(mark(X1), mark(X2))
MARK(zip(X1, X2)) → MARK(X2)
A__TAKE(s(N), cons(X, XS)) → MARK(X)
MARK(oddNs) → A__ODDNS
A__INCR(cons(X, XS)) → MARK(X)

The TRS R consists of the following rules:

a__pairNscons(0, incr(oddNs))
a__oddNsa__incr(a__pairNs)
a__incr(cons(X, XS)) → cons(s(mark(X)), incr(XS))
a__take(0, XS) → nil
a__take(s(N), cons(X, XS)) → cons(mark(X), take(N, XS))
a__zip(nil, XS) → nil
a__zip(X, nil) → nil
a__zip(cons(X, XS), cons(Y, YS)) → cons(pair(mark(X), mark(Y)), zip(XS, YS))
a__tail(cons(X, XS)) → mark(XS)
a__repItems(nil) → nil
a__repItems(cons(X, XS)) → cons(mark(X), cons(X, repItems(XS)))
mark(pairNs) → a__pairNs
mark(incr(X)) → a__incr(mark(X))
mark(oddNs) → a__oddNs
mark(take(X1, X2)) → a__take(mark(X1), mark(X2))
mark(zip(X1, X2)) → a__zip(mark(X1), mark(X2))
mark(tail(X)) → a__tail(mark(X))
mark(repItems(X)) → a__repItems(mark(X))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(0) → 0
mark(s(X)) → s(mark(X))
mark(nil) → nil
mark(pair(X1, X2)) → pair(mark(X1), mark(X2))
a__pairNspairNs
a__incr(X) → incr(X)
a__oddNsoddNs
a__take(X1, X2) → take(X1, X2)
a__zip(X1, X2) → zip(X1, X2)
a__tail(X) → tail(X)
a__repItems(X) → repItems(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


MARK(take(X1, X2)) → MARK(X2)
MARK(take(X1, X2)) → A__TAKE(mark(X1), mark(X2))
MARK(take(X1, X2)) → MARK(X1)
The remaining pairs can at least be oriented weakly.

MARK(incr(X)) → A__INCR(mark(X))
MARK(s(X)) → MARK(X)
MARK(incr(X)) → MARK(X)
MARK(cons(X1, X2)) → MARK(X1)
MARK(pair(X1, X2)) → MARK(X1)
A__ZIP(cons(X, XS), cons(Y, YS)) → MARK(X)
MARK(pair(X1, X2)) → MARK(X2)
MARK(zip(X1, X2)) → MARK(X1)
A__ODDNSA__INCR(a__pairNs)
A__ZIP(cons(X, XS), cons(Y, YS)) → MARK(Y)
MARK(zip(X1, X2)) → A__ZIP(mark(X1), mark(X2))
MARK(zip(X1, X2)) → MARK(X2)
A__TAKE(s(N), cons(X, XS)) → MARK(X)
MARK(oddNs) → A__ODDNS
A__INCR(cons(X, XS)) → MARK(X)
Used ordering: Polynomial interpretation [25,35]:

POL(zip(x1, x2)) = (3)x_1 + (4)x_2   
POL(A__ODDNS) = 0   
POL(a__oddNs) = 0   
POL(mark(x1)) = (2)x_1   
POL(a__pairNs) = 0   
POL(take(x1, x2)) = 1/4 + (4)x_1 + (2)x_2   
POL(repItems(x1)) = 9/4 + (4)x_1   
POL(a__incr(x1)) = (2)x_1   
POL(a__repItems(x1)) = 4 + (4)x_1   
POL(pair(x1, x2)) = x_1 + (2)x_2   
POL(pairNs) = 0   
POL(a__zip(x1, x2)) = (3)x_1 + (4)x_2   
POL(s(x1)) = x_1   
POL(nil) = 1/4   
POL(A__INCR(x1)) = (2)x_1   
POL(tail(x1)) = (4)x_1   
POL(a__tail(x1)) = (4)x_1   
POL(oddNs) = 0   
POL(0) = 0   
POL(a__take(x1, x2)) = 1/4 + (4)x_1 + (2)x_2   
POL(A__TAKE(x1, x2)) = (4)x_2   
POL(A__ZIP(x1, x2)) = (4)x_1 + (4)x_2   
POL(cons(x1, x2)) = (4)x_1 + (1/2)x_2   
POL(MARK(x1)) = (4)x_1   
POL(incr(x1)) = (2)x_1   
The value of delta used in the strict ordering is 1.
The following usable rules [17] were oriented:

a__pairNscons(0, incr(oddNs))
a__incr(cons(X, XS)) → cons(s(mark(X)), incr(XS))
a__oddNsa__incr(a__pairNs)
a__take(s(N), cons(X, XS)) → cons(mark(X), take(N, XS))
a__take(0, XS) → nil
a__zip(cons(X, XS), cons(Y, YS)) → cons(pair(mark(X), mark(Y)), zip(XS, YS))
a__zip(nil, XS) → nil
a__zip(X, nil) → nil
mark(pairNs) → a__pairNs
mark(incr(X)) → a__incr(mark(X))
a__repItems(nil) → nil
a__repItems(cons(X, XS)) → cons(mark(X), cons(X, repItems(XS)))
mark(zip(X1, X2)) → a__zip(mark(X1), mark(X2))
a__tail(cons(X, XS)) → mark(XS)
mark(tail(X)) → a__tail(mark(X))
mark(oddNs) → a__oddNs
mark(take(X1, X2)) → a__take(mark(X1), mark(X2))
mark(0) → 0
mark(s(X)) → s(mark(X))
mark(repItems(X)) → a__repItems(mark(X))
mark(cons(X1, X2)) → cons(mark(X1), X2)
a__incr(X) → incr(X)
a__pairNspairNs
mark(pair(X1, X2)) → pair(mark(X1), mark(X2))
mark(nil) → nil
a__tail(X) → tail(X)
a__zip(X1, X2) → zip(X1, X2)
a__take(X1, X2) → take(X1, X2)
a__oddNsoddNs
a__repItems(X) → repItems(X)



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ QDP
          ↳ QDPOrderProof
            ↳ QDP
              ↳ DependencyGraphProof
                ↳ QDP
                  ↳ QDPOrderProof
                    ↳ QDP
                      ↳ QDPOrderProof
QDP
                          ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

MARK(incr(X)) → A__INCR(mark(X))
MARK(s(X)) → MARK(X)
MARK(incr(X)) → MARK(X)
MARK(cons(X1, X2)) → MARK(X1)
MARK(pair(X1, X2)) → MARK(X1)
A__ZIP(cons(X, XS), cons(Y, YS)) → MARK(X)
MARK(pair(X1, X2)) → MARK(X2)
MARK(zip(X1, X2)) → MARK(X1)
A__ODDNSA__INCR(a__pairNs)
A__ZIP(cons(X, XS), cons(Y, YS)) → MARK(Y)
MARK(zip(X1, X2)) → A__ZIP(mark(X1), mark(X2))
MARK(zip(X1, X2)) → MARK(X2)
A__TAKE(s(N), cons(X, XS)) → MARK(X)
MARK(oddNs) → A__ODDNS
A__INCR(cons(X, XS)) → MARK(X)

The TRS R consists of the following rules:

a__pairNscons(0, incr(oddNs))
a__oddNsa__incr(a__pairNs)
a__incr(cons(X, XS)) → cons(s(mark(X)), incr(XS))
a__take(0, XS) → nil
a__take(s(N), cons(X, XS)) → cons(mark(X), take(N, XS))
a__zip(nil, XS) → nil
a__zip(X, nil) → nil
a__zip(cons(X, XS), cons(Y, YS)) → cons(pair(mark(X), mark(Y)), zip(XS, YS))
a__tail(cons(X, XS)) → mark(XS)
a__repItems(nil) → nil
a__repItems(cons(X, XS)) → cons(mark(X), cons(X, repItems(XS)))
mark(pairNs) → a__pairNs
mark(incr(X)) → a__incr(mark(X))
mark(oddNs) → a__oddNs
mark(take(X1, X2)) → a__take(mark(X1), mark(X2))
mark(zip(X1, X2)) → a__zip(mark(X1), mark(X2))
mark(tail(X)) → a__tail(mark(X))
mark(repItems(X)) → a__repItems(mark(X))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(0) → 0
mark(s(X)) → s(mark(X))
mark(nil) → nil
mark(pair(X1, X2)) → pair(mark(X1), mark(X2))
a__pairNspairNs
a__incr(X) → incr(X)
a__oddNsoddNs
a__take(X1, X2) → take(X1, X2)
a__zip(X1, X2) → zip(X1, X2)
a__tail(X) → tail(X)
a__repItems(X) → repItems(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 1 less node.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ QDP
          ↳ QDPOrderProof
            ↳ QDP
              ↳ DependencyGraphProof
                ↳ QDP
                  ↳ QDPOrderProof
                    ↳ QDP
                      ↳ QDPOrderProof
                        ↳ QDP
                          ↳ DependencyGraphProof
QDP
                              ↳ QDPOrderProof

Q DP problem:
The TRS P consists of the following rules:

MARK(incr(X)) → A__INCR(mark(X))
MARK(s(X)) → MARK(X)
MARK(incr(X)) → MARK(X)
MARK(cons(X1, X2)) → MARK(X1)
MARK(pair(X1, X2)) → MARK(X1)
A__ZIP(cons(X, XS), cons(Y, YS)) → MARK(X)
MARK(zip(X1, X2)) → MARK(X1)
MARK(pair(X1, X2)) → MARK(X2)
A__ODDNSA__INCR(a__pairNs)
A__ZIP(cons(X, XS), cons(Y, YS)) → MARK(Y)
MARK(zip(X1, X2)) → A__ZIP(mark(X1), mark(X2))
MARK(zip(X1, X2)) → MARK(X2)
MARK(oddNs) → A__ODDNS
A__INCR(cons(X, XS)) → MARK(X)

The TRS R consists of the following rules:

a__pairNscons(0, incr(oddNs))
a__oddNsa__incr(a__pairNs)
a__incr(cons(X, XS)) → cons(s(mark(X)), incr(XS))
a__take(0, XS) → nil
a__take(s(N), cons(X, XS)) → cons(mark(X), take(N, XS))
a__zip(nil, XS) → nil
a__zip(X, nil) → nil
a__zip(cons(X, XS), cons(Y, YS)) → cons(pair(mark(X), mark(Y)), zip(XS, YS))
a__tail(cons(X, XS)) → mark(XS)
a__repItems(nil) → nil
a__repItems(cons(X, XS)) → cons(mark(X), cons(X, repItems(XS)))
mark(pairNs) → a__pairNs
mark(incr(X)) → a__incr(mark(X))
mark(oddNs) → a__oddNs
mark(take(X1, X2)) → a__take(mark(X1), mark(X2))
mark(zip(X1, X2)) → a__zip(mark(X1), mark(X2))
mark(tail(X)) → a__tail(mark(X))
mark(repItems(X)) → a__repItems(mark(X))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(0) → 0
mark(s(X)) → s(mark(X))
mark(nil) → nil
mark(pair(X1, X2)) → pair(mark(X1), mark(X2))
a__pairNspairNs
a__incr(X) → incr(X)
a__oddNsoddNs
a__take(X1, X2) → take(X1, X2)
a__zip(X1, X2) → zip(X1, X2)
a__tail(X) → tail(X)
a__repItems(X) → repItems(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


MARK(pair(X1, X2)) → MARK(X1)
MARK(zip(X1, X2)) → MARK(X1)
MARK(pair(X1, X2)) → MARK(X2)
MARK(zip(X1, X2)) → A__ZIP(mark(X1), mark(X2))
MARK(zip(X1, X2)) → MARK(X2)
The remaining pairs can at least be oriented weakly.

MARK(incr(X)) → A__INCR(mark(X))
MARK(s(X)) → MARK(X)
MARK(incr(X)) → MARK(X)
MARK(cons(X1, X2)) → MARK(X1)
A__ZIP(cons(X, XS), cons(Y, YS)) → MARK(X)
A__ODDNSA__INCR(a__pairNs)
A__ZIP(cons(X, XS), cons(Y, YS)) → MARK(Y)
MARK(oddNs) → A__ODDNS
A__INCR(cons(X, XS)) → MARK(X)
Used ordering: Polynomial interpretation [25,35]:

POL(zip(x1, x2)) = 1 + (2)x_1 + (4)x_2   
POL(tail(x1)) = 7/4 + (4)x_1   
POL(A__INCR(x1)) = 4 + x_1   
POL(A__ODDNS) = 4   
POL(a__tail(x1)) = 7/4 + (4)x_1   
POL(a__oddNs) = 0   
POL(mark(x1)) = (2)x_1   
POL(oddNs) = 0   
POL(a__pairNs) = 0   
POL(take(x1, x2)) = 1/4 + (4)x_2   
POL(repItems(x1)) = 1 + (5/2)x_1   
POL(a__take(x1, x2)) = 1/2 + (4)x_2   
POL(0) = 0   
POL(A__ZIP(x1, x2)) = 4 + x_1 + (2)x_2   
POL(cons(x1, x2)) = x_1 + (1/2)x_2   
POL(MARK(x1)) = 4 + x_1   
POL(incr(x1)) = (4)x_1   
POL(a__incr(x1)) = (4)x_1   
POL(a__repItems(x1)) = 1 + (5/2)x_1   
POL(pair(x1, x2)) = 1/2 + x_1 + x_2   
POL(s(x1)) = x_1   
POL(a__zip(x1, x2)) = 2 + (2)x_1 + (4)x_2   
POL(pairNs) = 0   
POL(nil) = 1/2   
The value of delta used in the strict ordering is 1/2.
The following usable rules [17] were oriented:

a__pairNscons(0, incr(oddNs))
a__incr(cons(X, XS)) → cons(s(mark(X)), incr(XS))
a__oddNsa__incr(a__pairNs)
a__take(s(N), cons(X, XS)) → cons(mark(X), take(N, XS))
a__take(0, XS) → nil
a__zip(cons(X, XS), cons(Y, YS)) → cons(pair(mark(X), mark(Y)), zip(XS, YS))
a__zip(nil, XS) → nil
a__zip(X, nil) → nil
mark(pairNs) → a__pairNs
mark(incr(X)) → a__incr(mark(X))
a__repItems(nil) → nil
a__repItems(cons(X, XS)) → cons(mark(X), cons(X, repItems(XS)))
mark(zip(X1, X2)) → a__zip(mark(X1), mark(X2))
a__tail(cons(X, XS)) → mark(XS)
mark(tail(X)) → a__tail(mark(X))
mark(oddNs) → a__oddNs
mark(take(X1, X2)) → a__take(mark(X1), mark(X2))
mark(0) → 0
mark(s(X)) → s(mark(X))
mark(repItems(X)) → a__repItems(mark(X))
mark(cons(X1, X2)) → cons(mark(X1), X2)
a__incr(X) → incr(X)
a__pairNspairNs
mark(pair(X1, X2)) → pair(mark(X1), mark(X2))
mark(nil) → nil
a__tail(X) → tail(X)
a__zip(X1, X2) → zip(X1, X2)
a__take(X1, X2) → take(X1, X2)
a__oddNsoddNs
a__repItems(X) → repItems(X)



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ QDP
          ↳ QDPOrderProof
            ↳ QDP
              ↳ DependencyGraphProof
                ↳ QDP
                  ↳ QDPOrderProof
                    ↳ QDP
                      ↳ QDPOrderProof
                        ↳ QDP
                          ↳ DependencyGraphProof
                            ↳ QDP
                              ↳ QDPOrderProof
QDP
                                  ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

A__ZIP(cons(X, XS), cons(Y, YS)) → MARK(X)
MARK(incr(X)) → A__INCR(mark(X))
MARK(s(X)) → MARK(X)
A__ODDNSA__INCR(a__pairNs)
A__ZIP(cons(X, XS), cons(Y, YS)) → MARK(Y)
MARK(incr(X)) → MARK(X)
MARK(cons(X1, X2)) → MARK(X1)
MARK(oddNs) → A__ODDNS
A__INCR(cons(X, XS)) → MARK(X)

The TRS R consists of the following rules:

a__pairNscons(0, incr(oddNs))
a__oddNsa__incr(a__pairNs)
a__incr(cons(X, XS)) → cons(s(mark(X)), incr(XS))
a__take(0, XS) → nil
a__take(s(N), cons(X, XS)) → cons(mark(X), take(N, XS))
a__zip(nil, XS) → nil
a__zip(X, nil) → nil
a__zip(cons(X, XS), cons(Y, YS)) → cons(pair(mark(X), mark(Y)), zip(XS, YS))
a__tail(cons(X, XS)) → mark(XS)
a__repItems(nil) → nil
a__repItems(cons(X, XS)) → cons(mark(X), cons(X, repItems(XS)))
mark(pairNs) → a__pairNs
mark(incr(X)) → a__incr(mark(X))
mark(oddNs) → a__oddNs
mark(take(X1, X2)) → a__take(mark(X1), mark(X2))
mark(zip(X1, X2)) → a__zip(mark(X1), mark(X2))
mark(tail(X)) → a__tail(mark(X))
mark(repItems(X)) → a__repItems(mark(X))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(0) → 0
mark(s(X)) → s(mark(X))
mark(nil) → nil
mark(pair(X1, X2)) → pair(mark(X1), mark(X2))
a__pairNspairNs
a__incr(X) → incr(X)
a__oddNsoddNs
a__take(X1, X2) → take(X1, X2)
a__zip(X1, X2) → zip(X1, X2)
a__tail(X) → tail(X)
a__repItems(X) → repItems(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 2 less nodes.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ QDP
          ↳ QDPOrderProof
            ↳ QDP
              ↳ DependencyGraphProof
                ↳ QDP
                  ↳ QDPOrderProof
                    ↳ QDP
                      ↳ QDPOrderProof
                        ↳ QDP
                          ↳ DependencyGraphProof
                            ↳ QDP
                              ↳ QDPOrderProof
                                ↳ QDP
                                  ↳ DependencyGraphProof
QDP
                                      ↳ QDPOrderProof

Q DP problem:
The TRS P consists of the following rules:

MARK(incr(X)) → A__INCR(mark(X))
MARK(s(X)) → MARK(X)
A__ODDNSA__INCR(a__pairNs)
MARK(incr(X)) → MARK(X)
MARK(cons(X1, X2)) → MARK(X1)
MARK(oddNs) → A__ODDNS
A__INCR(cons(X, XS)) → MARK(X)

The TRS R consists of the following rules:

a__pairNscons(0, incr(oddNs))
a__oddNsa__incr(a__pairNs)
a__incr(cons(X, XS)) → cons(s(mark(X)), incr(XS))
a__take(0, XS) → nil
a__take(s(N), cons(X, XS)) → cons(mark(X), take(N, XS))
a__zip(nil, XS) → nil
a__zip(X, nil) → nil
a__zip(cons(X, XS), cons(Y, YS)) → cons(pair(mark(X), mark(Y)), zip(XS, YS))
a__tail(cons(X, XS)) → mark(XS)
a__repItems(nil) → nil
a__repItems(cons(X, XS)) → cons(mark(X), cons(X, repItems(XS)))
mark(pairNs) → a__pairNs
mark(incr(X)) → a__incr(mark(X))
mark(oddNs) → a__oddNs
mark(take(X1, X2)) → a__take(mark(X1), mark(X2))
mark(zip(X1, X2)) → a__zip(mark(X1), mark(X2))
mark(tail(X)) → a__tail(mark(X))
mark(repItems(X)) → a__repItems(mark(X))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(0) → 0
mark(s(X)) → s(mark(X))
mark(nil) → nil
mark(pair(X1, X2)) → pair(mark(X1), mark(X2))
a__pairNspairNs
a__incr(X) → incr(X)
a__oddNsoddNs
a__take(X1, X2) → take(X1, X2)
a__zip(X1, X2) → zip(X1, X2)
a__tail(X) → tail(X)
a__repItems(X) → repItems(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


MARK(incr(X)) → A__INCR(mark(X))
MARK(s(X)) → MARK(X)
A__ODDNSA__INCR(a__pairNs)
MARK(incr(X)) → MARK(X)
MARK(cons(X1, X2)) → MARK(X1)
MARK(oddNs) → A__ODDNS
The remaining pairs can at least be oriented weakly.

A__INCR(cons(X, XS)) → MARK(X)
Used ordering: Polynomial interpretation [25,35]:

POL(zip(x1, x2)) = 4 + (4)x_1 + (4)x_2   
POL(tail(x1)) = 2 + (4)x_1   
POL(A__INCR(x1)) = (1/4)x_1   
POL(A__ODDNS) = 3/4   
POL(a__tail(x1)) = 2 + (4)x_1   
POL(a__oddNs) = 4   
POL(mark(x1)) = x_1   
POL(oddNs) = 4   
POL(a__pairNs) = 5/2   
POL(take(x1, x2)) = 4 + (4)x_1 + x_2   
POL(repItems(x1)) = (3/2)x_1   
POL(0) = 0   
POL(a__take(x1, x2)) = 4 + (4)x_1 + x_2   
POL(cons(x1, x2)) = 1 + x_1 + (1/4)x_2   
POL(MARK(x1)) = 1/4 + (1/4)x_1   
POL(a__incr(x1)) = 1/4 + (5/4)x_1   
POL(incr(x1)) = 1/4 + (5/4)x_1   
POL(a__repItems(x1)) = (3/2)x_1   
POL(pair(x1, x2)) = 1/4 + (13/4)x_1 + (1/2)x_2   
POL(s(x1)) = 1/4 + x_1   
POL(a__zip(x1, x2)) = 4 + (4)x_1 + (4)x_2   
POL(pairNs) = 5/2   
POL(nil) = 11/4   
The value of delta used in the strict ordering is 1/16.
The following usable rules [17] were oriented:

a__pairNscons(0, incr(oddNs))
a__incr(cons(X, XS)) → cons(s(mark(X)), incr(XS))
a__oddNsa__incr(a__pairNs)
a__take(s(N), cons(X, XS)) → cons(mark(X), take(N, XS))
a__take(0, XS) → nil
a__zip(cons(X, XS), cons(Y, YS)) → cons(pair(mark(X), mark(Y)), zip(XS, YS))
a__zip(nil, XS) → nil
a__zip(X, nil) → nil
mark(pairNs) → a__pairNs
mark(incr(X)) → a__incr(mark(X))
a__repItems(nil) → nil
a__repItems(cons(X, XS)) → cons(mark(X), cons(X, repItems(XS)))
mark(zip(X1, X2)) → a__zip(mark(X1), mark(X2))
a__tail(cons(X, XS)) → mark(XS)
mark(tail(X)) → a__tail(mark(X))
mark(oddNs) → a__oddNs
mark(take(X1, X2)) → a__take(mark(X1), mark(X2))
mark(0) → 0
mark(s(X)) → s(mark(X))
mark(repItems(X)) → a__repItems(mark(X))
mark(cons(X1, X2)) → cons(mark(X1), X2)
a__incr(X) → incr(X)
a__pairNspairNs
mark(pair(X1, X2)) → pair(mark(X1), mark(X2))
mark(nil) → nil
a__tail(X) → tail(X)
a__zip(X1, X2) → zip(X1, X2)
a__take(X1, X2) → take(X1, X2)
a__oddNsoddNs
a__repItems(X) → repItems(X)



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ QDP
          ↳ QDPOrderProof
            ↳ QDP
              ↳ DependencyGraphProof
                ↳ QDP
                  ↳ QDPOrderProof
                    ↳ QDP
                      ↳ QDPOrderProof
                        ↳ QDP
                          ↳ DependencyGraphProof
                            ↳ QDP
                              ↳ QDPOrderProof
                                ↳ QDP
                                  ↳ DependencyGraphProof
                                    ↳ QDP
                                      ↳ QDPOrderProof
QDP
                                          ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

A__INCR(cons(X, XS)) → MARK(X)

The TRS R consists of the following rules:

a__pairNscons(0, incr(oddNs))
a__oddNsa__incr(a__pairNs)
a__incr(cons(X, XS)) → cons(s(mark(X)), incr(XS))
a__take(0, XS) → nil
a__take(s(N), cons(X, XS)) → cons(mark(X), take(N, XS))
a__zip(nil, XS) → nil
a__zip(X, nil) → nil
a__zip(cons(X, XS), cons(Y, YS)) → cons(pair(mark(X), mark(Y)), zip(XS, YS))
a__tail(cons(X, XS)) → mark(XS)
a__repItems(nil) → nil
a__repItems(cons(X, XS)) → cons(mark(X), cons(X, repItems(XS)))
mark(pairNs) → a__pairNs
mark(incr(X)) → a__incr(mark(X))
mark(oddNs) → a__oddNs
mark(take(X1, X2)) → a__take(mark(X1), mark(X2))
mark(zip(X1, X2)) → a__zip(mark(X1), mark(X2))
mark(tail(X)) → a__tail(mark(X))
mark(repItems(X)) → a__repItems(mark(X))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(0) → 0
mark(s(X)) → s(mark(X))
mark(nil) → nil
mark(pair(X1, X2)) → pair(mark(X1), mark(X2))
a__pairNspairNs
a__incr(X) → incr(X)
a__oddNsoddNs
a__take(X1, X2) → take(X1, X2)
a__zip(X1, X2) → zip(X1, X2)
a__tail(X) → tail(X)
a__repItems(X) → repItems(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 0 SCCs with 1 less node.